Practical Test

Deriving a Solubility Curve

Writing time: 45 minutes
Student's Name: \qquad
Teacher: \qquad
Structure of booklet

Section	Number of Questions	Number of questions to be answered	Marks
Short Answer	6	6	43

Directions to students

Materials

- Students are permitted to bring into the examination room: pens/pencils, highlighters, erasers, sharpeners, rulers, and an approved scientific calculator.
- Students are NOT permitted to bring into the examination room: white out liquid/tape, phones or electronic devices, including smart watches.
- Students are provided with the following: Question and answer book of 6 pages and VCAA Data booklet.

The task

- Please ensure that you write your name and teacher's name on this booklet. This paper consists of short answer questions.
- There are a total of $\mathbf{4 3}$ marks available.
- Be sure to include states with all chemical equations.
- All numerical answers need to be quoted to the correct number of significant figures.

1) Below is the procedure of a practical investigation to determine the solubility curve of KNO_{3}.

Procedure

1. Number four test tubes and place them into a test tube rack.
2. Using a balance to measure the KNO_{3}, prepare the test tubes as indicated below:

Test tube	grams of KNO_{3}	Volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{mL})$
1	2.00	5
2	4.00	5
3	6.00	5
4	8.00	5

3. Fill a 400 ml beaker about $3 / 4$ full of tap water. This will be used as a hot water bath.
4. Place the test tube 1 in the water bath and heat the water to $90^{\circ} \mathrm{C}$
5. Stir the KNO_{3}-mixture with a glass stirring rod until the KNO_{3} is completely dissolved.
6. One lab partner repeats step 4 for next test tube. The other lab partner holds test tube 1 with thermometer up to the light and at the first sign of crystallisation record the temperature. Record the data in a table and partners swap roles.
7. Repeat steps 4 and 6 for the remaining test tubes. Partners should now change roles, one will do step 5 and the other step 6 . Record all temperatures in the data table.

Mass of $\mathrm{KNO}_{3}(\mathrm{~g})$	Mass of water (g)	Grams of $\mathrm{KNO}_{3} / 100 \mathrm{~g}$ of water	Crystallisation temperature $\left(\mathrm{C}^{\circ}\right)$
4	20	20	6
3	10	30	13
8	20		24
12		60	60
7	10	70	43
28	30	90	55
20	140	75	

Table 1
a. Complete the table above

3 marks
b. Using the results from table 1 above and the graph paper on the next page to accurately plot the graph of "mass of KNO_{3} in 100 g of water versus temperature" using a line of-best-fit.

					Mass of KNO_{3} in 100 g of water versus temperature																					
,																										

c. Use the graph that you have plotted in question 1a to answer the following questions. Show all working out in the space provided for maximum marks.
i. What is the maximum amount, in grams, of KNO_{3} that can be dissolved in 25 g of distilled water at $65^{\circ} \mathrm{C}$.
ii. A saturated solution of KNO_{3} is formed using 50.0 g of water at $80^{\circ} \mathrm{C}$. This solution is then cooled to $60^{\circ} \mathrm{C}$. Calculate the amount, in grams, of KNO_{3} that precipitates out of solution.
iii. Describe one improvement to the procedure and describe how this would benefit the experimental design.

2 marks
iv. Discuss one error that may have occurred during the experiment and suggest what could be done to minimise this error.
v. Is the error mentioned in iv, above, a random or systematic error? Explain your answer.

2 marks
vi. Why do salts such as potassium nitrate have a higher solubility at higher temperatures?

1 mark
2) Consider the image on the right. It represents a crystal of NaCl and a water molecule, not drawn to scale.
a. In the space below, show how the water molecules and the sodium and chloride ions interact with each other in solution.

b. Name the type of bonding that exists between the water molecules and each ion.

1 mark
3) The image below shows the relationship between the first four hydrides of groups 4,5,6 and 7 and boiling temperature.
a. Give a clear explanation as to why:
i. the first hydride of groups 5, 6 and 7 has a greater boiling point than all the other three hydrides in the same group;

2 marks

ii. the first hydride from group $4\left(\mathrm{CH}_{4}\right)$ has a lower boiling point than all the other hydrides in the same group;

2 marks
iii. the last three hydrides in all the groups steadily increase in boiling temperature;
4) The specific heat capacity of an unknown liquid (Z) is given at $2.15 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$.
a. A mass of 15.6 g of this liquid " Z " at $25.0^{\circ} \mathrm{C}$ is heated to $45.0^{\circ} \mathrm{C}$. Calculate the amount, in joules, of heat energy absorbed by the liquid.

2 marks
b. A 4.67 gram sample of an unlabelled liquid is found in the laboratory. This sample is heated using 0.4016 kJ of heat energy and it's temperature changes from 25.0 ${ }^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. Is it liquid " Z "? Justify your answer with a calculation.

2 marks
c. The phase diagram of 2.00 mol of Z is shown below. Its latent heat of vaporization is $2.16 \mathrm{~J} / \mathrm{mol}$ while its latent heat of fusion is $1.25 \mathrm{~J} / \mathrm{mol}$
i. In what state/s does liquid "Z"exist in segment C-D

1 mark

ii. Explain the difference in inter-molecular bonding of " Z " between segments A-B and C-D.

2 marks
iii. Calculate the amount of energy needed to go from C to D on the graph above.
5) A sample of contaminated water is analysed and found to have a lead (Pb) concentration of 450 ppm . Calculate the lead concentration in \%m/v.
6) A wine bottle is labelled as having an alcohol concentration of $13.5 \% \mathrm{v} / \mathrm{v}$.
a. What volume, in mL , of alcohol is present in 75.0 mL of wine?

1 mark

b. If the density of alcohol, at room temperature, is $0.789 \mathrm{~g} / \mathrm{mL}$, calculate the concentration of the alcohol in the wine in $\% \mathrm{~m} / \mathrm{v}$.

3 marks

